OPEN BOOK EXAM

Menofia University Faculty of Engineering Basic Engineering Sci. Department Academic Year : 2015-2016 Date : 9/1/2016

Subject : Bio-Mathematics Code: BES 513 Time Allowed : 3 hours Year : Master Total Marks: 100 Marks

Answer all the following questions: [100 Marks]							
Q.1	(A) Write brief notes on the following topics:	[20]					
	1. What is biomathematics? And Why to study biomathematics?						
	2. Classification of Bio-signals?						
	3. What the Sources of Bio-Potential?						
	4. Bioengineeringand Biomaterials and its applications.						
	5. Biomechanics and Bio-fluid mechanics, view point of blood						
	flow.						
	6. Biomedical engineering and its new career areas.						
	7. Bioenvironmental engineering and Biosensors engineering.						
	8. Bioprocess engineering and tasks of bioprocess engineer.						
	(B) State the steps of constructing a mathematical model.						
Q.2	If we consider a two-dimensional channel of uniform thickness 2d,	[20]					
	filled with a compressible viscous liquid. The walls of the channel are						
	deformed in the shape of a traveling sinusoidal wave with constant						
	amplitudea (Peristaltic motion). The vertical displacements of the						
	upper and lower walls ($y = d$ and $y = -d$) are thus presumed to be η						
	and η , respectively, x and y are Cartesian coordinates with x measured						
	in the direction of wave propagation and y measured in the direction						
	normal to the mean position of the walls. Write the mathematical						
	model of this problem.						
Q.3	Consider an axisymmetric flow of a mixture of small spherical solid	[20]					
	particles and an incompressibleNewtonian viscous fluid through a						
	uniform circular cylindrical tube. The tube wall is flexible on which						

	are imposed travelling sinusoidal wave with constant amplitude b	
	(Peristaltic motion). The flow in cylindrical coordinates (r, z) with z	
	measured in the direction of wave propagation, whereas rstands for	
	theradial coordinate. Write the mathematical model of this problem.	
Q.4	Consider axially symmetric and fully developed pulsatile flow ofblood	[20]
	in an axisymmetric cylindrical artery of radius R through porous	
	medium with body acceleration under theinfluence of an external	
	uniform transverse magnetic field. Blood is assumed to be Newtonian,	
	incompressible, electrically conducting and viscous fluid. The fluid	
	subjected to a constant magnetic field acts perpendicular to the	
	artery.Assume that the magnetic Reynolds number of the flow is	
	taken to be small enough.Draw the geometry of the problem, then	
	Write the mathematical model of this problem.	
Q.5	Consider pulsatile flow of an incompressible couple stress fluid	[20]
	between two permeable beds through a porous medium in the	
	presence of magnetic field. The fluid is injected into the channel from	
	the lower permeable bed with a velocity V and is sucked into the	
	upper permeable bed with the same velocity. The flow between the	
	permeable beds is governed by couple stress fluid flow equations of	
	Stokes. Let the x-axis be taken along the interface and the y-axis	
	perpendicular to it. Let $y = 0$ and $y = h$ represent the interfaces of the	
	permeable beds under consideration. The flow as axially symmetric	
	and fully developed. Draw the geometry of the problem. Write the	
	mathematical model.	

This exam measures the following ILOs											
Question Number	Q1-a	Q1-b	Q3-b	Q4-a	Q1-c	Q2-a	Q3-a	Q4-c			
	04-b				Q2-b	Q2-c	Q3-c				
Knowledge &understanding skills			Intellectual Skills		Professional Skills						

With our best wishes

Asst. Prof. Dr. Islam M. Eldesoky Dr. Eng. Ramzy M. Abumandour *